

Acoustic Target Classification (Computer Aided Classification)

Outline

- 1. Problem description
- 2. Target Detection
- 3. Acoustic analysis methods
- 4. Acoustic classification
- 5. Classification libraries
- 6. Applications and trends

Presented by Philip la Grange

Acoustic Target Classification (Computer Aided Classification)

Biological sounds

Problem Description

Detect an underwater sound without visual confirmation.

Need to identify the sound.

Only want to "shoot" at your enemy forces.

Don't want to waste effort on non-target related sounds.

Adjust your tactics according to what you derive from the sound.

Typical sonar detection systems

Towed array

Cylindrical array

Military sonar displays

Introduction to spectrograms a "chirp" a FM pulse

Demon gram plot, Move cursor for readout. Right click to bring up the popup menu.

Reserved

Acoustic Analysis

Analysis of short spectrograms

Acoustic Classification

Propeller parameters (NOB,NOS,RPM)

Engine parameters (NOC,RPM,STROKE) (Gearbox ratio)

Sonar transmission parameters (typical pulse parameters)

Other transient sounds

Self noise identification

Acoustic Classification

Exact classification vs. generic classification.

Score=052 Type12=Merchant Vessel/Turbine Score=040 Type7=Merchant Vessel/Medium/Gearbox Score=039 Type6=Merchant Vessel/Large/Gearbox Score=039 Type15=Warship/Medium Score=038 Type5=Merchant Vessel/Very Large/Moc Score=037 Type14=Warship/Major/Turbine Score=033 Type21=Warship/Auxiliary Ship/SAN

"Exact" target parameters required in library Must have encountered the target "Rules"
e.g. RPM>500 = Fishing vessel
RPM>XXX = Torpedo
Intelligent rules

Classification Libraries

Propeller parameters Engine parameters Sonar transmission parameters

Transient sound spectrogram templates

Biological sound spectrogram templates

Applications (underwater)

Underwater surveillance Classify vessel sounds Classify sonar transmissions Classify transient sounds Identify biological sounds

Applications (above water)

Above water & land surveillance Classify land vehicles, aerial platforms Classify transient sounds (e.g. shots, breakages) Identify biological sounds

Spectrogram analysis (picture, 5 min - no sound)

Number of blades = 4 Shaft rate = XXX rpm

Spectrogram analysis (picture, no sound)

Spectrogram correlation advantages

- Work in high noise
- Maximize processing gain
- Attractive side lobes

Spectrogram analysis (picture, no sound)

Spectrogram correlation advantages

 Can tolerate small variations (do not need an exact replica in database)
 Very useful for biological sounds

compare to matched filtering

Input signal

Spectrogram correlation advantages

- Tolerate multi-path
- Reverberation / echo removal
- Image processing benefits

Input signal analysed

Spectrogram analysis (picture, no sound)

Spectrogram correlation advantages

- 2nd syllable of humpback whale
- more appropriate than matched filter

template

N2=250

Spectrogram analysis (picture, no sound)

Spectrogram correlation advantages

- Post-processing speed
- x10 (1/10th of image)
 - (x40)
- Classification library search
- "pictures" that do not interfere

500 * 1k FFT 0.1 Megapixel

1 second = 100 pixels = M

STFFT: 100 * N log (N) = 1M complex = 2M Matrix correlation = M * (M * N2) = 2M Time correlation = $(F_s)^2 = 2G$

F domain convolution (2s) = 4M complex = 8M

Summary

Overview of acoustic classification with traditional processing

Difference between exact and rule based classification

Potential to post (mission) process traditional Lofargrams & Demongrams without access to the raw data (amplitude is in the image)

Ability to improve both detection and classification of known pulses with spectrogram correlation

Ability to identify (classify) a wide range of transient sounds by spectrogram pattern matching rapidly in a very large database

New opportunities for smart waveform design and extensive use of available bandwidth

Acoustic Target Classification

- 13

End

Questions ?